RE-ASSIGNMENT OF THE VIBRATIONAL SPECTRA OF π -CYCLOPENTADIENYL- AND METHYL- π -CYCLOPENTADIENYL-MANGANESE TRICARBONYL

DAVID M ADAMS and ALAN SQUIRE

Department of Chemistry, University of Leicester, Leicester LE1 7RH (Great Britain) (Received May 7th, 1973)

SUMMARY

The long-standing assignment by Hyams, Bailey and Lippincott¹ of the vibrational spectrum of $Mn(CO)_3(\pi-C_5H_5)$ is corrected: the $\pi-C_5H_5$ part of the spectrum cannot be assigned on the basis of C_{5v} "local" symmetry, and the a_1 (in C_{3v}) δ (MnCO) mode is at 668 cm⁻¹, not 543 cm⁻¹ as previously claimed. New Raman data are given for $Mn(CO)_3(\pi-C_5H_4-CH_3)$ and assigned under C_s rules for the ring. C_{3v} symmetry is a good approximation for the $Mn(CO)_3$ moiety.

For many years the vibrational study of $Mn(CO)_3(\pi-C_5H_5)$ by Hyams, Bailey and Lippincott¹ (HBL) has stood as a point of reference for interpretation of other related molecular spectra. Their main conclusion was that the spectra could be interpreted on the basis of C_{5v} "local" symmetry for the ring, and C_{3v} "local" symmetry for the $M(CO)_3$ group. The concept of "local" symmetry has been widely, and often uncritically, applied to this and other systems despite much evidence to the contrary. We have re-investigated the spectra of this compound and conclude that C_{5v} "local" symmetry is *not* an adequate approximation. Further, the Raman polarisation data of HBL are partly in error: we give a corrected assignment for the Mn-(CO)₃ group which is now consistent with our earlier work² on $Cr(CO)_3(\pi-C_6H_6)$.

No Raman data have been reported for $Mn(CO)_3(\pi-C_5H_4-CH_3)$: Parker and Stiddard³ have studied the IR spectrum, but the theoretical basis of their assignment is wrong.

EXPERIMENTAL

Commercial samples of both complexes were purified by repeated sublimation $[Mn(CO)_3(\pi-C_5H_5)]$ or re-distillation *in vacuo*. IR spectra were obtained using PE-225 and Beckman-RIIC FS-620 instruments, with home-made cryostats. Raman spectra were recorded with a Coderg PHI instrument using 632.8 nm excitation. Liquid $Mn(CO)_3(\pi-C_5H_4\cdot CH_3)$ was distilled into a 1 cm Pyrex cell under vacuum and sealed off. It was studied as a solid by cooling a sealed capilliary in a "Cryocirc" cold cell. The Raman spectrum of liquid $Mn(CO)_3(\pi-C_5H_5)$ was obtained by heating the solid in vacuo in a 1 cm liquid cell mounted in a home-made thermostatted holder.

VIBRATIO	NAL FREQUENC	CIES (in cm^{-1}) OF	Mn(CO) ₃ (<i>π</i> -C ₅ H ₅)					
Raman ^a				IR				Assignment
Solid		Solution		Solid		Solution		1
Ambient	Cooled	Liquid	CH ₂ Cl ₂	Ambient	Cooled	CS ₂	C2CI4	1
3137 6	3140 m.					4039 ms 3945 s 3860 ms	4044 wm 3951 m 3868 wm	2 × v ₁₅ v ₁₅ + v ₂₁ 2 × v ₂₁
3120 m 3108 m 3008 m	3122 m 3105 m 3005 m	3123 ms, P 3101 w (sh), dp	3122 _s , P ⁶ 3102 w, dp ^b			3115 ms	3118 wm	۲ ¹ ۲9
(3068) w						3050 (sh)		
						3040 wm 2837 w	3044 w	2 × v.
						2716 vw		$2 \times v_{12}$
						2685 w	2685 vw	V1 + V16
						2654 wm	2657 w	$v_{15} + v_{22}$
						2600 w		$v_{21} + v_{16}$
							2576 ($v_{21} + v_{22}$
						2561 wm	2563 ("	$v_{15} + v_{23}$
						2509 wm	2512	$v_{15} + v_{17}$
						2479 wm	2480 w	$v_{21} + v_{23}$
		2032 w (sh) P				2428 m	2430 wm	$v_{21} + v_{17}$
		2016 m, P	2024 ms, P	2027 vs	2027 vs		2027 vvs	V15
III 4 107	III 0107			s (SA CTOZ	2015 vs 1956 sh			
1943 ms	1944 s	1925 ms (br), dp	1934 ms (br), dp	1943 vs	1942 vs		1942 vvs	V21
1921 s	1922 s				1926 w (sh)			:
1914 m	1914 m			1906 (sh)	1910 w			
1428) 1423(wm	1430 wm 1423 wm	1427 m, dp	1427 w, dp ^b	1427 ms 1427 ms	1429 m 1417 m	1423 ms	1425 ms	۶ ⁸
1361 wm	1363 wm	1363 w, dp	1364 w, br ^b	1360 m	1362 m	1360 m ^c		V12
						1311 vw (sh)		1

382

TABLE 1

(continued)								
V25a,b	371 m (br) ^d				377 wm, dp	380 ms, dp		
			391 vw		•		393 ms	387 wm
			489∫ ³					
V24		490 w	491 (488 wm	491 m, dp	491 ms, dp	491 ms	489 wm
V17			503 m	500 wm	499 vs, P	499 vs, P	505 vs	502 m
V23	539 s	537 s	544) ^S	542 vs	543 m, dp	543 m, dp	541 wm	539 (sh)
		()	548)				548 wm	545 m
V14		589 vw (sh)	610 ms	008 ms	009 W, F	609 WIII, F	M 710	
V22	634 vs	634 vs	632)	633 vs		640 vw, dp		633 vw
			638) vs					639 vw
V16	666 vs	663 vs	664) vs	663 vs	670 w, P	668 wm, P	670 vw	667 wm
2 X V ₁₈	(48) (sh)	669 sh	09.5 w (01, su) 669)	(699				
$v_{18} + v_{25}$		731 w	722 w 205 /1 1.)					
$2 \times v_{25}$		749 w	740 w (br)					
			833 s			•		
-	800 ms	838 ve (hr)	840 vw 836 s	83 <i>1</i> 6		877 w dn	un yt 8	835 wm
			842 vw				841 w (sh)	
V2	842 wm (sh)		847) ^S	845 S	839 m, P	839 m, P	848 w (sh)	846 wm
$v_{24} + v_{25}$			ооо Ш 854)	601 (Sn) 849)		(118) M 600	853 wm	
		903 (will (⁰¹)	906 w (br)	903 w (br)				
$v_{23} + v_{25}$		917	915 vw (br)		916 vw, P	915 w, P		
V13				III 606	929 vw. dn	926 vw (br) dn	935 w	933 w (br)
$v_{14} + v_{24}$		981 (br, sh) 056 (br, sh)	960 vw (br)	959 vw (br) 030 m			046 viii	
			1000 sh	(0001			1007 MIII	
v ₆	1007 m	1006 m	1013) m	1013) m	1012 w, P?	1012 w, P ²	1008 w	1006 wm
$v_{17} + v_{23}$			1036 vw (br)	1030 vw			1015 vw	1014 w
۷11		1050 wm	106/{wm 1058	1064 m	74, sm cout	1068 ms, P?	106/ ms	1060 ms
							1109 w	1108 wm (sh)
۶,		1114 wm	1114 wm	1113 m	1113 vs, P	1116 vs, P	1117 vs	1120 vs
V10 a,b		1200 w (UL) 1148 w	1157 vw (br)	1152 vw (br)	1 . W TLLI	T M (171	1163 vw (br)	1161 w (UL)
V4		1265 wm 1200 /h-/	1261 w (br) 1208 /br)	1263 w (br)	G 1111	D 1017 W D	(1773 mm (hr)	1210 (hr)

π -CYCLOPENTADIENYL MANGANESE TRICARBONYLS

383

Ranart IR Assignment Solid Solution Solution Solution Assignment Jmbient Cooled Laquid CH_2Cl_3 Ambient Solution Solution 370 wm 371 ms Solution Solution Solution Solution Solution Solution Autom 370 wm 371 ms Solution Solution Solution Solution Solution Solution Autom Autom Autom Solution Autom Autom<	IABLE 1 (coi	nta)							
	Raman ^a				IR				Assignment
AmbentCooledLiquid CH_2Cl_2 AmbentCooled C_2 C_2Cl_4 370 wm371 ms377 wm375 wm375 wm375 wm359 vvs357 vvs357 vvs357 vvs376 wm359 vvs357 vvs357 vvs357 wm γ_{16} 149 wm141 (sh)141 (sh)132 w (sh) P? γ_{16} 128 ms128 m (sh)132 w (sh) P? γ_{16} v_{16} 128 ms128 m (sh)132 w (sh) P? γ_{16} v_{16} 128 ms128 m (sh)132 w (sh) P? γ_{16} v_{16} 128 ms128 m (sh) γ_{16} v_{16} v_{16} 128 ms128 m (sh) γ_{16} v_{16} v_{16} 128 m (sh)101 s γ_{16} v_{16} v_{16} 128 m (sh)104 s, dp $104 s, dp$ v_{16} v_{16} 100 (sh)101 s γ_{16} v_{16} v_{16} γ_{18} γ_{18} γ_{16} v_{16} v_{16} γ_{18} γ_{16} γ_{16} v_{16} v_{16} γ_{18} γ_{16} γ_{16} v_{16} v_{16} γ_{18} γ_{18} γ_{18} v_{16} v_{16} γ_{18} γ_{18} γ_{18} v_{16} v_{16}	Solid	-	Solution		Solid		Solution		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ambient	Cooled	Liquid	CH ₂ Cl ₂	Ambient	Cooled	CS ₂	C2Cl4	I
370 wm 371 ms 370 wm 371 ms 357 vvs 357 vvs 357 vvs 357 vvs 357 vvs 357 vvs 149 wm 141 (sh) 141 (sh) 139 m 128 m (sh) 73 w (sh) P? 120 s 124 vs 112 hvs 104 hvs 104 s, dp 1						375 wm			
359 vvs 357 vvs 357 vvs 357 vvs 352 vvs, P 350 vs, P 358 w v_{18} 149 wm 141 (sh) 139 m 128 ms 128 m (sh) 120 s 124 vs 112 ms 112 w (sh) P? 120 s 124 vs 112 ms 112 vs, dp 100 (sh) 101 s 104 s, dp 49 w 60 m 34 wm 358 w v_{19}^{r} 132 w (sh) P? 132 w (sh) P? 133 w (sh) P? 134 w (sh) P? 135 w (sh) P? 135 w (sh) P? 132 w (sh) P? 134 w (sh) P? 135 w (sh) P? 134 w (sh) P? 135 w (sh) P? 135 w (sh) P? 135 w (sh) P? 134 w (sh) P? 135 w (sh) P? 134 w (sh) P? 135 w (sh) P? 135 w (sh) P? 136 w (sh) P? 137 w (sh) P? 137 w (sh) P? 138 w (sh) P?	370 wm	371 ms				370 wm			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	359 vvs	357 vvs	352 vvs, P	350 vs, P		358 w			V18
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		149 wm							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		141 (sh)							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		139 m							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	128 ms	128 m (sh)		132 w (sh) P ²					v19 ^e
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120 s	124 vs	112)						
100 (sh) 101 s Lattice 73 vw 73 vw 80 m 49 w 60 m 34 wm	112 ms	114 vs	104 { vs, ap	104 s, dp) ^v 26
49 w 60 m 34 wm 3	100 (sh)	101 s							Lattice
49 w 60 m 34 wm	•	73 vw							> modes
34 wm	49 w	60 m							
		34 wm							-
	a D molomicad	d damalamod b		Vice at 1261 am - 1 /0 E	101) and 1265 (e Can taut	

^a P, polarised, dp, depolarised. ^b CDCl₃ solution. ^c Also at 1361 cm⁻¹ (C_2 HCl₃) and 1362 cm⁻¹ (C_6 H₆), ^a CH₂Cl₂ solution, ^e See text.

384

Depolarisation ratios were measured with a scrambler in the scattered beam and a half-wave plate in the incident beam: the maximum ratio is therefore 6/7.

SELECTION RULES

Selection rules for π -C₅H₅ systems have been quoted elsewhere⁴. For our purpose we need only note the numbers of bands predicted on the various symmetry approximations. They are: π -C₅H₅: C_{5v} $3a_1$ (IR, Ra) + a_2 + $4e_1$ (IR, Ra) + $6e_2$ (Ra); C_s 13a' + 11a'' (all IR + Ra), where activities are given in parentheses. The π -C₅H₄·CH₃ group can only be discussed on the basis of C_s symmetry, and not C_{2v} as has been done previously for reasons which elude us^{5,6}.

ASSIGNMENT AND DISCUSSION

Data are presented in Tables 1 and 2. Assignments follow logically both from this new evidence, and by comparison with the established assignments for ferrocene⁷, ruthenocene⁸, and $Cr(CO)_3(\pi-C_6H_6)^2$. We discuss briefly the main points of difference from HBL: a fully argued account is given in ref. 9. Assignments are made using C_{5v} labels in order to emphasise the relation to ferrocene-like spectra, but are not to be taken literally, see below. The numbering system of Parker and Stiddard³ is used.

π-C₅H₅ RING SPECTRA

A band count for both IR and Raman solution spectra shows (i) many more IR bands than predicted by C_{5v} "local" symmetry, (ii) eight, rather than the three C_{5v} -predicted, polarised Raman bands. Clearly, the effective symmetry is not C_{5v} . The point is well emphasised by comparing solution spectra of Mn(CO)₃(π -C₅H₅) and ferrocene or ruthenocene: the simplicity of the latter is striking. The effect of the Mn(CO)₃ group is generally to cause e_2 species to become IR-active and/or Raman bands of e_1 and e_2 type to become partly polarised (due to an a' component in C_s), rather than to induce full splitting into a' and a'' components. It is this lack of pronounced splitting of e_1 and e_2 modes in solution that seems to have misled others into using the C_{5v} approximation. An analogous situation occurs in Cr(CO)₃(π -C₆H₆): it has been clear ever since Fritz's original IR study¹⁰ that the ring must be considered under C_{3v} rules, although the true reason was not then deduced.

THE π -(C₅H₄-CH₃) RING SPECTRA

Assignments were made by analogy with unsubstituted π -C₅H₅ systems, having first accounted for modes due to the methyl group. The ring-methyl deformations are placed at 320 cm⁻¹ (ν_{10b}) and 220 cm⁻¹ (ν_{7a}): analogous modes in toluene are at 344 and 217 cm⁻¹. This assignment differs from those of Parker and Stiddard⁵ for Mn(CO)₃(π -C₅H₄-CH₃) and of Bailey and Lippincott⁶ for Fe(π -C₆H₄-CH₃)₂ principally in its completeness.

Mn(CO)₃ SPECTRA

In the v(CO) region Mn(CO)₃(π -C₅H₅) shows the two bands expected for a

TABLE 2

Raman		IR		Assignment
Solid (cooled)	Lıquıd	Solid (cooled)	Liquid	
			4030 m	$2 \times v_{15}$
			3934 ms	$v_{15} + v_{21}$
			3840 m	$2 \times v_{21}$
3128 w				
3120 wm	3119 s, P	3118 w	3116 m	v ₁
3106 w	3100 m, dp	3104 w		V 5a b, 9a
2990 vvw(br)	2989 w (sh), dp		2983 m	(CH-)
2976 vw (br)	2971 wm, dp		2965 m	
2943) w	2936 s, P		2934 m	$v(CH_3)_s$
2938∫ w		2925 w (br)		
	2908 wm, P		2905 m	$2 \times v(CH_3)_{as}$
			2743 w	$2 \times v(CH_3)_s$
			2687 w	$v_{15} + v_{16}$
			2653 w	$v_{15} + v_{22}$
			2558 wm	$v_{15} + v_{23}$
			2509 wm	$v_{15} + v_{17}$
			2455 (sh)	$v_{21} + v_{23}$
			2415 wm	$v_{15} + v_{25}$
			2365 w (br)	$v_{15} + v_{18}$
			2302 vw (sh)	$v_{21} + v_{25}$
		••••	2276 wm	$v_{9a} + v_3$
	2027 (sh), P	2021 (s	2030 (sh)	
2006 wm	2012 m, P	2011) (sh)	2017 vs	v ₁₅
		1988 (sh)		
1942 w		1958 (sh)	1942 (sh) (br)	
	1919 ms (br), dp	1920 s	1917 vs)` '	V ₂₁
1912 m				
1910 (sh)		1007(1)		
1905 m		1897 (sn)		
1884 W		1880 m	1672	
1 497	1497	1082 W	10/3 Wm (Dr)	9
146/ W 1466)	1467 wm (0.37) 1461) (0.75)	1460 III 1458) (cb)	1465 m	V8a, V8b'
$\frac{1400}{1454}$ w (br)	1401(wm (0.8))	1456 ((511)	1439 111	$\delta (CH_3)_{as}$
1434)	1434) (08)	1450 j III 1450 m	1450 (ch)	
		1430 III 1422 w	1430 (SII) 1427 (sh)	
		1435 W	1427 (81)	V86'
1308 8000	1306 wm (br) (0.5)	1307 m	1302 wm	11
1377 w	1380 wm (01) (03)	1377 m	1370 m	$\delta (C \mathbf{U})$
1 <i>311</i> W	1380 w (072)	1 <i>377</i> m	1373 m	0 (CI13)s
		1313 w	1555 WIII	
		1313 W	1266 w	
1232 ms	1233 6 (0.07)	1731	1200 w	
1202 1118	1233 \$ (0.07)	1231 W	1205 will	V9b
			1200 w 1158 w	
1117 wm	$1118 m (\sim 0)$		1100 w	11
1117 WIII	1110 m (≈0)		1121 W	V10a

THE VIBRATIONAL FREQUENCIES (In cm⁻¹) OF Mn(CO)₃(π -C₃H₄-CH₃)^{*a.b*}

(Continued)

Solid (cooled) Liquid Solid (cooled) Liquid 1072 ms 1069 ms (0 39) 1069 1065 $\}$ m 1065 wm 1045 ms 1048 vs (< 0.1) 1042 m 1045 m	v_{11a} v_{11b} v_{3} $\rho(CH_{3})$ $v_{13a,b} \text{ or } v_{6b}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	v_{11a} v_{11b} v_3 $\rho(CH_3)$ $v_{13a,b} \text{ or } v_{6b}$
1045 ms 1048 vs (< 0.1) 1042 m 1045 m	v_3 $\rho(CH_3)$ $v_{13a,b}$ or v_{6b}
1035) wm	$\rho(CH_3)$ $v_{13a,b}$ or v_{6b}
1032 wm 1033 (sh) ? 1029 m 1030 m	$v_{13a,b}$ or v_{6b}
983 w 985 w (0 85) 984 w (br) 959 vw	N
932 m 931 s (0.08) 931 wm 929 wm	^v 6a
921 vw 918 vvw, dp	0.0
906 vw (br)	
882 w (br) 881 vvvw, dp 876 w	v13a,b?
857 wm 851 wm, dp 852 ms 848 (sh)	V _{7b}
847 w 841) wm, P 844 m	v ₂
835 wm 835 m	
740 vw	
706 vw (br)	
675 w 671 wm (0.18) 675 (s 669 s 669 (sh)	v ₁₆
654 wm	
644 w 641 wm 646 (sh) 639 s 634 s (br)	v
630 ym 620 m (0.26) 620 (sh)	v 22
623 (w 613 w (sh) 620 (sh) 617 (sh)	V14a
612 w $610 w$ $610 w$	* 146
546 wm $543 wm$ (0.73) $547 ms$ $530 s$	N
540 WIII 545 WIII (0.75) 547 His 555 s	*23
545 (sh)	
500 m 506 wm	
504 m 500 s P 501 wm	V
498) 493 ms dn 495 wm	V 17
494 m 491 wm	• 24
405)	
398 m 398 ms (0.65) 394 wm	V
370 vs 362 vvs. P 356 vw	725 V 10
361 (sh)	. 18
326 wm 322 w (0.87) 318 wm	Vion
238 wm	100
220 wm 222 wm (0.5) 217 wm	V7.
150 w	7 a
127 s	
114 wm 112) (2 an)	V26 27
102 vs $104 vs$ (0.88)	- 20,27
85 wm	
60 w	

TABLE 2 (contd)

^a Figures in brackets are the approximate band depolarisation ratios Maximum value is 0.86. ^b For Mn(CO)₃(π -C₅H₄-CH₃) ν_{9a} , ν_{10b} and ν_{7a} become ν (C-CH₃), δ (C-CH₃) and π (C-CH₃) respectively. In addition 2a' + a'' components are expected for each of the modes ν (CH₃), δ (CH₃) and ρ_r (CH₃)

 C_{3v} top. The more complex solid state spectra are in accord with factor group predictions. HBL considered that the additional complexity of the solid state spectra upon cooling is due to a phase change. This is not so: we could not detect any specific heat anomaly down to 175 K using a differential scanning calorimeter. This complex crystallises in the monoclinic group C_{2h}^5 with a tetramolecular cell¹¹. Thus, the a_1 v(CO) modes couple around the cell giving a vector¹² $A_g + B_g + A_u + B_u$: the IR bands at 2027 and 2015 cm⁻¹ are therefore the $A_u + B_u$ modes and the 2016 cm⁻¹ Raman band is either A_g or B_g . The e v(CO) mode, after coupling, gives $2(A_g + B_g + A_u + B_u)$, most of which we observed.

Below 700 cm⁻¹ the Raman polarisation data and the IR/Raman coincidences lead to an assignment for the ν (M-C), δ (MCO) region which is in close agreement with that established earlier for Cr(CO)₃(π -C₆H₆)². Contrary to the report of HBL that the 543 cm⁻¹ band is polarised (and hence a_1 in $C_{3\nu}$) we find it to be depolarised. We were able to see the weak 668 cm⁻¹ band for the first time in solution. It is definitely polarised. The situation is summarised in Table 3.

TABLE 3

	VIBRATIONAL FREQUENCIES (in cr	1 ⁻¹) AND ASSIGNMENT FOR	t THE M(CO) ₃	$GROUP(C_{3v})$
--	--------------------------------	--------------------------------------	--------------------------	-----------------

$Cr(CO)_3(\pi - C_6H_6)^{a}$	$Mn(CO)_3(\pi-C_5H_5)$	Assignment
1980	2027	(v(CO)
653	666	$\delta(MCO)$
483	499	a_1 $v(M-C)$
301	350	(v(M-Ring))
1908	1942	(v(CO)
624	634	δ (MCO)
531	539	$e \langle \delta(MCO) \rangle$
476	491	v(M-C)
338	377	(Ring tilt

ACKNOWLEDGEMENT

We thank the S.R.C. for a maintenance grant to A.S.

REFERENCES

- 1 I. J Hyams, R T Bailey and E. R. Lippincott, Spectrochim. Acta, Part A, 23 (1967) 273
- 2 D. M. Adams and A. Squire, J Chem Soc A, (1970) 814
- 3 D. J. Parker and M H B. Stiddard, J. Chem. Soc. A, (1970) 480
- 4 DM Adams, Metal-Ligand and Related Vibrations, Arnold, London, 1967
- 5 D J Parker and M. H. B. Stiddard, J Chem Soc A, (1970) 1040
- 6 R T Bailey and E R Lippincott, Spectrochim Acta, 21 (1965) 389.
- 7 D Hartley and M. J Ware, J. Chem. Soc. A, (1969) 138.
- 8 D M. Adams and W. S. Fernando, J Chem Soc, Dalton Trans, (1972) 2507
- 9 A Squire, Ph D Thesis, University of Leicester, 1970.
- 10 H. P. Fritz and J Manchot, Spectrochim Acta, 18 (1962) 171
- 11 A. F. Berndt and R E Marsh, Acta Crystallogr., 16 (1963) 118.
- 12 D M. Adams and D. C Newton, Tables for Factor and Point Group Analysis, Beckman-RIIC Limited, Croydon, 1970.